导热材料:
傅力叶方程式:
Q=KA△T/d,
R=A△T/Q Q: 热量,W
K: 导热率,W/mk
A:接触面积
d: 热量传递距离
△T:温度差
R: 热阻值
导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。
将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。
但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。
根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。
实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。
所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。
通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。 此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。
而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。
傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。
总之:
a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。
b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的时间也越多,效能也越差。
c. 对于导热材料,选用合适的导热率、厚度是对性能有很大关系的。选择导热率很高的材料,但是厚度很大,也是性能不够好的。最理想的选择是:导热率高、厚度薄,完美的接触压力保证最好的界面接触。
d、使用什么导热材料给客户,理论上来讲是很困难的一件事情。很难真正的通过一些简单的数据,来准确计算出选用何种材料合适。更多的是靠测试和对比,还有经验。测试能达到产品要求的理想效果,就是最为合适的材料。
e、不专业的用户,会关注材料的导热率;专业的用户,会关注材料的热阻值。